Lecture 20. Methods for solving the radiative
transfer equation. Part 3. Discrete-ordinate method.

Objectives:

1. Discrete-ordinate method for the case of isotropic scattering.

2.Generalization of the discrete-ordinate method for inhomogeneous atmosphere.
3. Numerical implementation of the discrete-ordinate method: DISORT
Reguired reading:

LO2: 6.2

Recommended readine

Thomas G.E. and K. Stamnes., Radiative transfer in the atmosphere and ocean, 2000,
Chapter 8.1-8.10



1. Discrete-ordinate method for the case of 1sotropic
scattering.

e A discrete-ordinate method has been developed by Chandrasekhar in about 1930

(see Chandrasekhar S., Radiative transfer, 1960, Dover Publications).

Recall the radiative transfer equation for azimuthally independent diffuse intensity:
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For isotropic scattering, the scattering phase function is 1. Hence we have
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Let’s apply the Gauss formula to replace the integral in Eq.[20.1]
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Inhomogeneous part

where i=-n, ...,n (2n terms) and a; are the Gaussian weights (constants) and g are

quadrature angles (or points).



Eq.[20.2] is a system of 2n inhomogeneous differential equations:
Solution of Eq.|20.2] = general solution + particular solution

where the general solution is a solution of the homogeneous part of the Eq.[20.2]

Denoting I; = I; (1)), the general solution of Eq.[20.2] can be found as
[, =g, exp(—kT) [20.3]

Inserting Eq.[20.3] into Eq.[20.2], we obtain
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j=-n
We can find g; in the form
g, =L+ i k)
where L is a constant to be determined. Substituting this expression for g; in Eq.[20.4].

we have
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Eq.[20.5] gives 2n solutions for +/-K; (j=1....,n).



Thus general solution is
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where L; are constants.
The particular solution can be found as
1= 2oL g oxp( =t/ uty) [20.7]
4
where fi; are constants.
Inserting Eq.[20.7] into Eq.[20.2], we have
ol +u, u,)= mT“ i ah, +1 [20.8]
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From Eq.[20.8], A&; is found as

h,=y/(1+u,/u,)

where yis determined from

N a =g g, [20.9]
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Adding the general solution Eq.[20.6] and the particular solution Eq.[20.7], we have the

solution
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where L; are constants to be determined from the boundary conditions.

H-function has been introduced by Chandrasekhar as
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One can express yin the H-function that Eq.[20.10] becomes
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Eq.[20.12] gives a simple solution for the semi-infinite isotropic atmosphere (see

[L02:6.2.2)
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2. Generalization of the discrete-ordinate method for
inhomogeneous atmosphere.

Let’s consider the atmosphere with non-isotropic scattering.

We can expand the diffuse intensity in the cosine series
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So we need to solve
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The general solution may be written

I"(rt,u,)= Z L07 (1) exp(—k]'T)

j=—n

oy, k7', L7 are coefficients to be determined.

The particular solution may be written
(T )= Z" () exp(—7/ i)
Z"(u,) is a function
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The complete solution of the radiative transfer is

n
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[20.14]

NOTE: If a layer has gases, acrosols and/or clouds, one needs to calculate the effective

optical properties of this layer.



Let’s generalize the complete solution Eq.[20.14] of the radiative transfer for the

inhomogeneous atmosphere. The atmosphere can be divided into the N homogeneous

layers, each is characterized by a single scattering albedo, phase function, and optical
depth.
For /-th layer, we can write the solution using Eq.[20.14]. To simplify notations, let’s

consider the azimuthal independent case (i.e., m=0), so we have
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Now, we need to match the boundary and continuity conditions between layers.

At the top of the atmosphere (TOA): no downward diffuse intensity
I"='0.-u,)=0 [20.16]
At the layer’s boundary: upward and downward intensities must be continuous
e, y=1""r,u,) [20.17]

At the bottom of the atmosphere (assuming the Lamdertian surface):
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Eqs.[20.16]-[20.18] provide necessary equations to find the unknown coefficients.



3. Numerical implementation of discrete-ordinate
methods: DISORT.

DISORT is a FORTRAN numerical code based on the discrete-ordinate method
developed by Stamnes, Wiscombe et al. DISORT is openly available and has a good
user-guide.

1) DISORT applies to the inhomogeneous nonithothermal plane-parallel atmosphere.

2) A user may set-up any numbers of the plane-parallel layers.

3) Each layer must be characterized by the effective optical depth, single scattering
albedo and asymmetry parameter if the Henyey-Greenstein phase function is used.

4) A user may use any phase function by providing the Legendre polynomial expansion
coefficients.

5) A user selects a number of streams (kKeeping in mind that the computation time varies
as n?").

6) A key problem is to obtain a solution for fluxes for strongly forward-peaked scattering.
7) DISORT allows predicting the intensity as a function of the direction and position at

any point in the atmosphere (i.e., not only at the boundaries of the lavers).



Eddington Second Approximation for Radiances

The Eddington approximation can give accurate radiances only through a two-step
process:
1y The Eddington solution gives the crude radiance field,
2) The source function, with scattering. is found from the
Eddington Iy, /1, and then integrated for the radiance.

Used for thermal emission with scattering, where source function is
i i w J' I oy i iy r I \ I \
JiT, ) = [ ) Plp,p ) Iir g dp + (1 —w)B(T)
Putting in the Eddington approximation:
Jegalp) — wily + Lgp) + (1 —w)B(T)
Upwelling radiance at top is then
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Eddington’s second approximation works well when scattering integral is like a
low order moment.
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Difference in upwelling zenith brightness temperature between the Eddington approximation and
spherical harmonic (£ = 11} radiative transfer methods at 855 GHz for a modeled ice particle
layer. There is a single uniform ice sphere layver of optical depth 2 at 85.5 GHz with temperature
from 270 to 245 K above a blackbody surface at 270 K. The top panel is for unscaled Eddington,

and the bottom is for delta-sealed Eddington. [Evans, 1993, PhD thesis)



Multiple Scattering Flux Reflection Results
Fundamental property of reflectivity from radiative transfer:
Linear for 7 < | (first order solution)
Saturation for v = |
More forward scattering means less reflection(g T = R |)
Equivalent isotropic scattering optical depth: 7" — (1 —wglr

Higher solar zenith angle means more reflection unless optically thin: (g | = R 7T)

Multiple scattering amplifies absorption (pg — 2/3 g — 0.85):
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Reflectivity (r). transmissivity (7). and absorptivity (@) as a function of cosine of solar zenith

angle (p1q) for various single-scattering albedoes (w) and later optical depths (7). comparing exact.
Eddington and delta-Eddington methods for asymmetry factor ¢ = (0.8 and surface albedo (A4 = O).
[Joseph and Wiscombe, 1976: The Delta-Eddington Approximation for Radiative Flux Transfer,
J. Atmos. Sci., 33, 24520



